Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 9, 2026
-
Free, publicly-accessible full text available April 8, 2026
-
Lung cancer is a serious global health issue that requires the development of patient-specific, lung cancer model for surgical planning to train interventionalists and improve the accuracy of biopsies. Although the emergence of three-dimensional (3D) printing provides a promising solution to create customized models with complicated architectures, current 3D printing methods cannot accurately duplicate anatomical-level lung constructs with tumor(s) which are applicable for hands-on training and procedure planning. To address this issue, an embedded printing strategy is proposed to create respiratory bronchioles, blood vessels, and tumors in a photocurable yield-stress matrix bath. After crosslinking, a patient-specific lung cancer analogous model is produced, which has tunable transparency and mechanical properties to mimic lung parenchyma. This engineered model not only enables the practical training of fine-needle aspiration biopsy but also provides the necessary information, such as coordinates of aspiration, wound depth, and interference with surrounding tissues, for procedure optimization.more » « less
-
ABSTRACT Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages ofQuercusand relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages ofQuercusand relatives in Quercoideae during their initial radiation, dated to the Early‐Middle Eocene. Ancestral reconstructions including fossils suggest ancestors ofCastanea + Castanopsis,Lithocarpus, and the Old World oak clade probably co‐occurred in North America and Eurasia, while the ancestors ofChrysolepis, Notholithocarpus, and the New World oak clade co‐occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization—perhaps in the form of ancient syngameons like those seen today—has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.more » « less
-
ABSTRACT While many plant lineages display remarkable diversity in morphological form, our understanding of how phenotypic diversity, or disparity, arises in relation to genomic evolution over geologic scales remains poorly understood. Here, we investigated the relationship between phenotypic and genomic evolution in the Fagales, a lineage of woody plants that has been a dominant component of temperate and subtropical forests since the Late Cretaceous. We examine newly generated transcriptomic and trait datasets representing most extant genera and a rich diversity of Cretaceous fossil representatives. Our phylogenomic analyses identify recurrent hotspots of gene duplication and genomic conflict across the order. Our phenotypic analyses showed that the morphospace occupied by Fagales was largely filled by the early Cenozoic, and rates of evolution were highest during the early radiation of the Fagales crown and its major families. These results suggest that Fagales conforms to an “early‐burst” model of disparification, with morphospace being filled early in the order's diversification history, and that elevated levels of phenotypic evolution also often correspond to hotspots of gene duplication. Species diversification appears decoupled from patterns of both phenotypic and genomic evolution, highlighting the multidimensional nature of the evolution of plant diversity across geological timescales.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.more » « less
-
ABSTRACT Studies of ‘food globalisation’ have traced the dispersal of cereals across prehistoric Eurasia. The degree to which these crops were accompanied by knowledge of soil and water preparation is less well known, however. The authors use stable isotope and archaeobotanical analyses to trace long-term trends in cultivation practices on the Loess Plateau (6000 BC–AD 1900). The results indicate that ancient farmers cultivated grains originating in South-west Asia and used distinct strategies for different species. Barley was integrated into pre-existing practices, while wheat was grown using novel soil and water management strategies. These distinct approaches suggest that the spread of prehistoric crops and knowledge about them varied by local context.more » « less
An official website of the United States government
